Пигменты фотосинтеза: описание и фото

Пигменты фотосинтеза: описание и фото

9.3.2. Фотосинтетические пигменты

Фотосинтетические пигменты высших растений делятся на две группы – хлорофиллы и каротиноиды. Роль этих пигментов состоит в том, чтобы поглощать свет и превращать его энергию в химическую энергию. Пигменты локализованы в мембранах хлоропластов, и хлоропласты обычно располагаются в клетке так, чтобы их мембраны находились под прямым углом к источнику света, что гарантирует максимальное поглощение света. В табл. 9.4 перечислены пигменты, характерные для различных групп растений.


Таблица 9.4. Главные фотосинтетические пигменты, их цвет и распространение

Хлорофиллы

Хлорофиллы поглощают главным образом красный и сине-фиолетовый свет. Зеленый свет они отражают и потому придают растениям характерную зеленую окраску, если только ее не маскируют другие пигменты. На рис. 9.9 показаны спектры поглощения хлорофиллов a и b – для сравнения – спектр каротиноидов.


Рис. 9.9. Спектры поглощения хлорофиллов a и b и каротиноидов

Для хлорофиллов характерно наличие порфиринового кольца (рис. 9.10). Такая же структура имеется и в других важных биологических соединениях – в геме гемоглобина, миоглобина и цитохромов. Порфириновое кольцо – это плоская квадратная структура, состоящая из четырех меньших колец (I-IV), каждое из которых содержит по одному атому азота, способному взаимодействовать с атомами металлов; в хлорофиллах это магний, в геме-железо. К такой “голове” присоединен длинный углеводородный “хвост” – сложноэфирная связь образуется между спиртовой группой (-ОН) на конце фитола и карбоксильной группой (-СООН) на самой голове. У разных хлорофиллов разные боковые цепи, и это несколько изменяет их спектры поглощения.


Рис. 9.10. Строение хлорофилла. Координационная связь: Х-СН3 – у хлорофилла а; -СНО – у хлорофилла b

Связь такой структуры с функцией можно описать следующим образом:

а) длинный хвост растворим в липидах (т. е. он гидрофобный) и таким образом удерживает молекулу в мембране тилакоида;

б) голова гидрофильная (т. е. обладает сродством к воде), и поэтому она обычно лежит на той поверхности мембраны, которая обращена к водной среде стромы;

в) для лучшего поглощения света плоскость головы расположена параллельно плоскости мембраны;

г) модификация боковых групп на голове приводит к изменениям в спектре поглощения, в результате чего меняется и количество поглощаемой энергии света;

д) поглощение световой энергии головой приводит к эмиссии электронов.

Хлорофилл а – фотосинтетический пигмент, представленный в наибольшем количестве; это единственный пигмент, который имеется у всех фотосинтезирующих растений и играет у них центральную роль в фотосинтезе. Существует несколько форм этого пигмента, которые различаются своим расположением в мембране. Каждая форма слегка отличается от других и по положению максимума поглощения в красной области; например, этот максимум может быть при 670, 680, 690 или 700 нм.

9.6. Чем отличается спектр поглощения хлорофилла а от спектра поглощения хлорофилла b?

Каротиноиды

Каротиноиды – это желтые, оранжевые, красные или коричневые пигменты, которые сильно поглощают в сине-фиолетовой области. Обычно они замаскированы зелеными хлорофиллами, но хорошо выявляются перед листопадом, так как хлорофиллы в листьях распадаются первыми. Каротиноиды содержатся также в хромопластах некоторых цветков и плодов, яркая окраска которых служит для привлечения насекомых, птиц и других животных, участвующих в опылении цветков или распространении семян; например, красный цвет кожицы помидоров обусловлен присутствием одного из каротинов – ликопина.

Каротиноиды имеют три максимума поглощения в сине-фиолетовой области спектра (рис. 9.9); они не только функционируют как дополнительные пигменты, но и защищают хлорофилл от избытка света и от окисления кислородом, выделяющимся при фотосинтезе.

Каротиноиды бывают двух типов – каротины и ксантофиллы. Каротины – это углеводороды, большую часть которых составляют тетратерпены (С40-соединения). Самым распространенным и самым важным из них является β-каротин (рис. 9.11), который знаком всем как оранжевый пигмент моркови. Позвоночные животные способны в процессе пищеварения расщеплять молекулу каротина надвое с образованием двух молекул витамина А. Ксантофиллы по химическому строению очень сходны с каротинами и отличаются от них только тем, что содержат кислород.


Рис. 9.11. Строение β-каротина

Спектры поглощения и спектры действия

При изучении какого-либо процесса, активируемого светом, в частности фотосинтеза, очень важно знать спектр действия для данного процесса – тогда можно попытаться идентифицировать пигменты, которые в нем участвуют. Спектр действия – это график, показывающий эффективность стимулирующего действия света с различной длиной волны на исследуемый процесс, в нашем случае – на фотосинтез; эту эффективность можно оценивать, например, по образованию кислорода. Спектр поглощения – это график, отображающий относительное поглощение света с различной длиной волны тем или иным пигментом. Спектр действия для фотосинтеза показан на рис. 9.12, вместе с объединенным спектром поглощения всех фотосинтетических пигментов. Обратите внимание на большое сходство этих двух графиков: оно свидетельствует о том, что именно пигменты, и в частности хлорофилл, ответственны за поглощение света при фотосинтезе.


Рис. 9.12. Сравнение спектра действия фотосинтеза со спектром поглощения фотосинтетических пигментов

Возбуждение пигментов светом

Пигменты – это химические соединения, которые поглощают видимый свет, что приводит к переходу некоторых электронов в возбужденное состояние, т. е. эти электроны поглощают энергию. Чем меньше длина волны, тем выше энергия света и тем больше его способность переводить электроны в возбужденное состояние. Такое состояние обычно неустойчиво, и вскоре молекула возвращается в свое основное состояние (т. е. исходное низкоэнергетическое состояние), теряя при этом энергию возбуждения. Эта энергия может использоваться разными способами, в том числе на процесс, обратный поглощению света и называемый флуоресценцией. При этом часть энергии теряется в виде тепла, поэтому излучаемый свет имеет несколько большую длину волны (и меньшую энергию), чем поглощенный. Это можно увидеть, если сначала осветить раствор хлорофилла, а затем посмотреть на него в темноте.

Во время световых реакций фотосинтеза возбужденные пигменты теряют электроны, и на их месте в молекулах остаются положительные “дырки”, например:

Всякий потерянный электрон будет принят другой молекулой – так называемым акцептором электрона, так что в целом это окислительно-восстановительный процесс (см. Приложение 1.2). Хлорофилл окисляется, а акцептор электрона восстанавливается. Хлорофилл служит здесь донором электрона.

Главные и вспомогательные пигменты

Фотосинтетические пигменты бывают двух типов – главные и вспомогательные. Пигменты второго типа передают испускаемые ими электроны главному пигменту. Электроны, испускаемые главными пигментами, непосредственно доставляют энергию для реакций фотосинтеза.

Существует два главных пигмента, это две формы хлорофилла а; их обозначают Р690 и Р700 (см. ниже). Сокращение Р означает “пигмент” (pigment). К вспомогательным пигментам относятся другие формы хлорофилла (в том числе все остальные формы хлорофилла а) и каротиноиды.

9.7. Поскольку энергию нельзя передавать со 100%-ной эффективностью, переход электрона от одной молекулы пигмента к другой должен сопровождаться некоторой потерей энергии в виде тепла. Хлорофилл b передает электроны на хлорофилл а. Можете ли вы сказать заранее, какой из этих хлорофиллов – а или b – обладает меньшей энергией возбуждения (т. е. энергией, необходимой для того, чтобы пигмент испустил электрон)?

Фотосинтетические единицы и реакционные центры

За последние двадцать лет мы многое узнали о расположении пигментов и связанных с ними молекул в мембранах тилакоидов. В настоящее время принято считать, что существует два типа фотосинтетических единиц, которые называют фотосистемами I и II (ФСI и ФСII). Каждая из этих единиц состоит из набора молекул вспомогательных пигментов, передающих энергию на одну молекулу главного пигмента. Последняя называется реакционным центром; в нем энергия света используется для осуществления химической реакции. Именно здесь происходит преобразование световой энергии в химическую, и именно оно является центральным событием фотосинтеза.

Судя по результатам биохимических и электронно-микроскопических исследований, каждая фотосистема содержит около 300 молекул хлорофилла. Препараты для электронной микроскопии приготовлялись методом замораживания-скалывания, который описан в Приложении 2.5; это один из хороших примеров успешного применения такого метода. Как видно на рис. 9.13, в мембранах тилакоидов имеются частицы двух типов, расположенные в определенном порядке; такие частицы называются квантосомами. Как полагают, более мелкие частицы составляют фотосистему I, а более крупные – фотосистему ΙΙ. Для каждого типа частиц характерен свой специфический набор молекул хлорофилла (рис. 9.14). Частицы фотосистемы II, по-видимому, в основном связаны с гранами. На рис. 9.14 схематически показано, как энергия (в виде возбужденных электронов) “переливается” со вспомогательных светособирающих пигментов на главный пигмент, который представлен особой формой хлорофилла а – пигментом Р690 или Р700 (в соответствии с максимумом поглощения в нанометрах). Р690 и Р700 – это энергетические ловушки. Другие специфические формы хлорофилла а, например a670 или a680, можно считать такими же вспомогательными пигментами, как и хлорофилл b. На рис. 9.14 не показаны каротиноиды, но они, по-видимому, тоже играют роль вспомогательных пигментов. Электроны, попавшие в энергетическую ловушку, используются для запуска световых реакций.


Рис. 9.13. Тилакоиды хлоропласта, выявленные методом замораживания-скалывания. Видна поверхность скола мембран самих гран и между ними. Обратите внимание на агрегаты частиц на этих мембранах


Рис. 9.14. Схематическое представление об энергетических ловушках в фотосистемах I и II. Р – пигмент, те молекула первичного пигмента хлорофилла а

Чтобы все ваши желания стали действительностью, вам необходимо вкусить блаженство с хорошими проститутками и заняться с ними любовью. Всегда индивидуалки помогут исполниться вашим самым порядочным голым фантазиям.

Характеристики и основные типы фотосинтетических пигментов

фотосинтетические пигменты они представляют собой химические соединения, которые поглощают и отражают определенные длины волн видимого света, что делает их выглядящими «красочными». Различные типы растений, водорослей и цианобактерий имеют фотосинтетические пигменты, которые поглощают на разных длинах волн и генерируют разные цвета, в основном зеленый, желтый и красный.

Эти пигменты необходимы для некоторых автотрофных организмов, таких как растения, потому что они помогают им использовать широкий диапазон длин волн для производства пищи в процессе фотосинтеза. Поскольку каждый пигмент реагирует только с некоторыми длинами волн, существуют разные пигменты, которые позволяют захватывать большее количество света (фотонов).

  • 1 Характеристики
  • 2 типа фотосинтетических пигментов
    • 2.1 Хлорофиллы
    • 2.2 Каротиноиды
    • 2,3 Phycobilins
  • 3 Ссылки

черты

Как указано выше, фотосинтетические пигменты представляют собой химические элементы, которые отвечают за поглощение необходимого света, чтобы можно было генерировать процесс фотосинтеза. Посредством фотосинтеза энергия Солнца преобразуется в химическую энергию и сахара.

Солнечный свет состоит из различных длин волн, которые имеют разные цвета и уровни энергии. Не все длины волн одинаково используются в фотосинтезе, поэтому существуют разные типы фотосинтетических пигментов.

Фотосинтетические организмы содержат пигменты, которые поглощают только длины волн видимого света и отражают другие. Множество длин волн, поглощаемых пигментом, является его спектром поглощения..

Пигмент поглощает определенные длины волн, а те, которые не поглощают, отражают их; цвет – это просто свет, отраженный пигментами. Например, растения выглядят зелеными, потому что они содержат много молекул хлорофилла А и В, которые отражают зеленый свет.

Типы фотосинтетических пигментов

Фотосинтетические пигменты можно разделить на три типа: хлорофиллы, каротиноиды и фикобилины.

хлорофиллы

Хлорофиллы – это зеленые фотосинтетические пигменты, содержащие в своем составе порфириновое кольцо. Они являются стабильными кольцевыми молекулами, вокруг которых электроны могут свободно мигрировать.

Поскольку электроны движутся свободно, кольцо может легко приобретать или терять электроны и, следовательно, может предоставлять заряженные электроны другим молекулам. Это фундаментальный процесс, с помощью которого хлорофилл “захватывает” энергию солнечного света.

Типы хлорофиллов

Существует несколько типов хлорофилла: a, b, c, d и e. Из них только два обнаружены в хлоропластах высших растений: хлорофилл а и хлорофилл б. Наиболее важным является хлорофилл “а”, так как он присутствует в растениях, водорослях и фотосинтезирующих цианобактериях..

Хлорофилл “а” делает возможным фотосинтез, потому что он передает свои активированные электроны другим молекулам, которые будут производить сахара.

Второй тип хлорофилла – это хлорофилл “b”, который встречается только в так называемых зеленых водорослях и растениях. С другой стороны, хлорофилл “с” обнаружен только в фотосинтетических членах хромистической группы, как в динофлагеллятах.

Различия между хлорофиллами этих основных групп были одним из первых признаков того, что они не так тесно связаны, как считалось ранее.

Количество хлорофилла “b” составляет около четверти от общего содержания хлорофилла. Со своей стороны, хлорофилл «а» встречается во всех фотосинтезирующих растениях, поэтому его называют универсальным фотосинтетическим пигментом. Они также называют его первичным фотосинтетическим пигментом, потому что он выполняет первичную реакцию фотосинтеза.

Из всех пигментов, которые участвуют в фотосинтезе, хлорофилл играет фундаментальную роль. По этой причине остальные фотосинтетические пигменты известны как вспомогательные пигменты..

Использование вспомогательных пигментов позволяет поглощать более широкий диапазон длин волн и, следовательно, захватывать больше энергии от солнечного света.

каротиноиды

Каротиноиды являются еще одной важной группой фотосинтетических пигментов. Они поглощают фиолетовый и сине-зеленый свет.

Каротиноиды обеспечивают яркие цвета, которые присутствуют в плодах; например, красный помидор обусловлен присутствием ликопена, желтый цвет семян кукурузы вызван зеаксантином, а апельсин кожуры апельсина – бета-каротином.

Все эти каротиноиды важны для привлечения животных и способствуют рассеянию семян растения.

Как и все фотосинтетические пигменты, каротиноиды помогают улавливать свет, но также играют другую важную роль: удаляют избыточную энергию от Солнца..

Таким образом, если лист получает большое количество энергии, и эта энергия не используется, этот избыток может повредить молекулы фотосинтетического комплекса. Каротиноиды участвуют в поглощении избыточной энергии и помогают рассеивать ее в виде тепла.

Читайте также:  Трахикарпус Форчуна: описание и фото

Каротиноиды обычно представляют собой красные, оранжевые или желтые пигменты и включают в себя хорошо известное соединение каротина, которое придает цвет моркови. Эти соединения образованы двумя маленькими кольцами из шести атомов углерода, соединенными «цепочкой» атомов углерода..

В результате своей молекулярной структуры они не растворяются в воде, а вместо этого связываются с мембранами внутри клетки.

Каротиноиды не могут напрямую использовать энергию света для фотосинтеза, но должны передавать поглощенную энергию хлорофиллу. По этой причине они считаются вспомогательными пигментами. Другим примером хорошо видимого вспомогательного пигмента является фукоксантин, который придает водорослям и диатомовым водорослям коричневый цвет..

Каротиноиды можно разделить на две группы: каротиноиды и ксантофиллы.

каротины

Каротины – это органические соединения, широко распространенные в виде пигментов в растениях и животных. Его общая формула C40H56 и не содержит кислорода. Эти пигменты являются ненасыщенными углеводородами; то есть они имеют много двойных связей и принадлежат к серии изопреноидов.

У растений каротины придают желтый, оранжевый или красный цвета цветам (календулы), плодам (тыквы) и корням (моркови). У животных они видны в жирах (сливочное масло), яичных желтках, перьях (канарейка) и скорлупе (омары).

Наиболее распространенным каротином является β-каротин, который является предшественником витамина А и считается очень важным для животных..

ксантофиллы

Ксантофиллы – это желтые пигменты, молекулярная структура которых аналогична каротиноидам, но с той разницей, что они содержат атомы кислорода. Некоторые примеры: C40H56O (криптоксантин), C40H56O2 (лютеин, зеаксантин) и C40H56O6, который является характерным фукоксантином бурых водорослей, упомянутых выше.

В целом, каротиноиды имеют более оранжевый цвет, чем ксантофиллы. Как каротиноиды, так и ксантофиллы растворимы в органических растворителях, таких как хлороформ, этиловый эфир и другие. Каротины более растворимы в сероуглероде по сравнению с ксантофиллами.

Функции каротиноидов

– Каротиноиды действуют как вспомогательные пигменты. Поглощают лучистую энергию в средней области видимого спектра и передают ее хлорофиллу.

– Они защищают компоненты хлоропласта от кислорода, образующегося и выделяющегося при фотолизе воды. Каротиноиды собирают этот кислород через свои двойные связи и изменяют свою молекулярную структуру до состояния с меньшей энергией (безвредно).

– Возбужденное состояние хлорофилла реагирует с молекулярным кислородом, образуя крайне разрушительное состояние кислорода, называемое синглетным кислородом. Каротиноиды предотвращают это, отключая состояние возбуждения хлорофилла.

– Три ксантофилла (виолоксантин, антероксантин и зеаксантин) участвуют в рассеивании избыточной энергии, превращая ее в тепло.

– Из-за своего цвета каротиноиды делают цветы и фрукты видимыми для опыления и рассеивания животными.

фикобилины

Фикобилины представляют собой пигменты, растворимые в воде, и, следовательно, они находятся в цитоплазме или строме хлоропласта. Встречаются только у цианобактерий и красных водорослей (Rhodophyta).

Фикобилины важны не только для организмов, которые используют их для поглощения энергии света, но они также используются в качестве инструментов исследования.

При воздействии интенсивных световых соединений, таких как пикоцианин и фикоэритрин, они поглощают энергию света и выделяют ее, излучая флуоресценцию в очень узком диапазоне длин волн..

Свет, производимый этой флуоресценцией, настолько отличителен и надежен, что фикобилины могут быть использованы в качестве химических «меток». Эти методы широко используются в исследованиях рака для «маркировки» опухолевых клеток..

Что такое фотосинтез? История открытия процесса, фазы фотосинтеза и его значение.

Оглянитесь вокруг! Пожалуй, в каждом доме есть хотя бы одно зеленое растение, а за окном несколько деревьев или кустарников. Благодаря сложному химическом процессу происходящего в них фотосинтеза стало возможно зарождение жизни на Земле и существование человека. Разберем историю его открытия, суть процесса и реакции, которые протекают в разных фазах.

История открытия фотосинтеза

В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.

Но еще 300-400 лет назад ответ на вопрос «откуда растения берут питательные вещества для строительства своих клеток?» занимал умы ученых во всем мире.

Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.

Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.

Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.

После ван Гельмонта различные ученые повторили его опыт, и сложилась так называемая «водная теория питания растений».

Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.

И как часто бывает в науке, помог его величество случай.

Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла. К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха. И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.

Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.

В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.

И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.

Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа. Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками. А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.

Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.

Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.

А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке. В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности. Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.

Именно эти опыты положили начало изучению фотосинтеза.

Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света. И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.

Значение фотосинтеза для жизни на Земле

И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.

Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.

Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.

Подробнее о «великой кислородной революции» можно прочитать в учебнике «Биология 10-11 классы» под редакцией А.А. Каменского на портале LECTA.

К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.

Определение и формула фотосинтеза

Определение и формула фотосинтеза

Слово фотосинтез состоит из двух частей: фото — «свет» и синтез — «соединение», «создание». Если подходить к определению упрощенно, то фотосинтез — это превращение энергии света в энергию сложных химических связей органических веществ при участии фотосинтетических пигментов. У зеленых растений фотосинтез происходит в хлоропластах.

Схема фотосинтеза, на первый взгляд, проста:

Вода + квант света + углекислый газ → кислород + углевод

или (на языке формул):

Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.

Фазы фотосинтеза

К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.

Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:

  1. две мембраны;
  2. стопки гранов;
  3. диски тилакоидов;
  4. строма — внутреннее вещество хлоропласта;
  5. люмен — внутреннее вещество тилакоида.

Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.

Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.

Световая фаза фотосинтеза

Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.

Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.

Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.

Гидроксильные ионы идут на производство кислорода:

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.

Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.

На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.

Повторим ключевые процессы световой фазы фотосинтеза:

  1. Фотон попадает на хлорофилл с выделением электронов.
  2. Фотолиз воды.
  3. Выделение кислорода.
  4. Накопление НАДФН+.
  5. Накопление АТФ.

У некоторых растений фотосинтез идет по упрощенному варианту, который называется «циклическое фосфорилирование» и разбирается этот процесс в учебнике «Биология 10-11 классы» под редакцией А. А. Каменского на портале LECTA.

Фотосинтетические пигменты

У высших растений имеется три группы пигментов: хлорофиллы, каротиноиды и фикобилины.

Основными пигментами, осуществляющими поглощение квантов света в процессе фотосинтеза, являются хлорофиллы, пигменты, содержащие Mg-порфириновый комплекс. Обнаружено несколько форм хлорофиллов, различающихся по химическому строению. Спектр поглощения различных форм хлорофиллов охватывает видимую, ближнюю ультрафиолетовую и ближнюю инфракрасную области спектра (у высших растений от 350 до 700 нм, а у бактерий — от 350 до 900 нм). Хлорофилл а является основным пигментом и характерен для всех организмов, осуществляющих фотосинтез с выделением кислорода (рис 6.5).

У фотосинтезирующих организмов кроме хлорофилла a имеются хлорофиллы b, с и d, которые расширяют спектр поглощения света.

Рис. 6.5. Строение хлорофилла а

В поглощении световой энергии участвуют каротиноиды (пигменты полиизопреноидной природы) — у фотосинтезирующих эукариот, и фикобилины (пигменты с открытой тетрапиррольной структурой) — у цианобактерий и красных водорослей.

Читайте также:  Алоказия Сандера, Алоказия амазонская: описание и фото

В клетке молекулы хлорофилла вместе с другими пигментами, участвующими в процессах поглощения квантов света и передачи энергии, образуют светособирающие хлорофилл-белковые комплексы (ССК). Молекулы ССК имеют максимум поглощения при разной длине волны и расположены от пигмента с максимумом поглощения при меньшей длине волны к пигменту с большей.

Важнейшим структурно-функциональным звеном фотосинтетического аппарата является фотосистема — совокупность ССК, фотохимического реакционного центра и переносчиков электрона.

В процессе фотосинтеза у растений принимают участие две фотосистемы.

Фотосистема I включает светособирающий комплекс и фотохимический реакционный центр I, в состав которого входит димер хлорофилла, поглощающий свет с длиной волны 700 нм (П700).

Фотосистема II включает светособирающий комплекс и фотохимический реакционный центр II, в состав которого входит димер хлорофилла, поглощающий свет с длиной волны 680 нм (П680).

Свет поглощается двумя фотосистемами раздельно, и нормальное осуществление фотосинтеза требует их одновременного участия.

Световая фаза фотосинтеза

Фотосинтез начинается с поглощения квантов света молекулами хлорофилла и другими связанными с ним пигментами. Энергия поглощенных квантов света стекается от сотен молекул пигментов ССК к молекуле пигмента П700 (Е = + 0,43В), которая переходит в возбужденное состояние (Е = ‒ 0,80 В) и легко отдает электрон первичному акцептору (фотохимическая реакция). Электрон с первичного акцептора, которым является мономерная форма хлорофилла а, передается на филлохинон (витамин К) – вторичный акцептор и затем на железосерные белки. Следующим переносчиком является железосодержащий белок ферредоксин (Е = ‒ 0,43В). Ферредоксин содержит два атома железа в негеминовой форме. От ферредоксина электрон переносится на НАДФ (Е = ‒ 0,32В). Этот перенос осуществляется с помощью специфического белка-фермента (ферредоксин-НАДФ-редуктазы), коферментом которого является ФАД.

Последовательность расположения переносчиков определяется величиной окислительно-восстановительного потенциала: электроны спонтанно текут в сторону менее отрицательного окислительно-восстановительного потенциала (рис. 6.6).

Рис 6.6. Электрон-транспортная цепь в мембране тилакоида

Отдав электрон, П700 остается в виде ионизированной молекулы. При этом потенциал П700становится снова + 0,43 В (основное состояние). Благодаря этому он является прекрасным акцептором электронов. Источником электрона, заполняющего эту «дырку», является фотосистема II. Она ответственна за реакции, связанные с разложением воды и выделением кислорода.

В состав реакционного центра фотосистемы II входит хлорофилл а, поглощающий свет с длиной волны 680 нм (П680). Под влиянием поглощенного кванта света возбужденный электрон от П680 (Е = ‒ 0,7 В) воспринимается первичным акцептором, которым является молекула феофитина. Затем электрон передается на пластохиноны, переносящие как электроны, так и протоны. От пластохинона электроны поступают на b/f-комплекс и передаются через железосерный белок на цитохром. Цитохром относится к группе цитохромов с = +0 ,36 В). Воспринимая электрон, цитохром восстанавливается: Fe 3+ + е – —> Fe 2+ . Следующий переносчик — пластоцианин — это медьсодержащий белок, в котором на каждую молекулу белка приходится два атома меди (Е = + 0,37 В), осуществляющих электронный транспорт: Cu 2+ + е – —> Сu + . Пластоцианин выполняет роль связующего звена между b/f-комплексом и фотосистемой I. От пластоцианина электрон заполняет электронную «дырку» у П700.

Заполнение электронной вакансии в молекуле П680 происходит за счёт воды. В состав фотосистемы II входит водоокисляющий комплекс, содержащий в активном центре ионы марганца в количестве 4 штук. Для образования одной молекулы кислорода требуется две молекулы воды, дающие 4 электрона. Поэтому процесс проводится в 4 такта и для его полного осуществления требуется 4 кванта света. Водоокисляющий комплекс находится со стороны внутритилакоидного пространства, и полученные 4 протона выбрасываются внутрь тилакоида.

Таким образом, в результате работы фотосистемы II происходит окисление 2 молекул воды с помощью 4 квантов света с образованием 4 протонов во внутритилакоидном пространстве. Протоны внутрь тилакоида перекачиваются также через b/f-комплекс за счет энергии, которая выделяется в окислительно-восстановительной реакции при транспорте электронов. В результате на мембране тилакоида создается электрохимический потенциал, который является промежуточной формой запасания энергии и используется для синтеза АТФ протонной АТФ-синтазой.

Помимо полного нециклического пути переноса электрона, описанного выше, может протекать и циклический путь. В этом случае ферредоксин вместо НАДФ + восстанавливает пластохинон, который переносит электрон назад на b/f-комплекс. В результате образуется бóльший протонный градиент и больше АТФ, но не восстанавливается НАДФ + .

Темновая фаза фотосинтеза протекает в строме и не является светозависимой.

С3-фотосинтез (цикл Кальвина, восстановительный пентозофосфатный цикл) состоит из трёх стадий (рис. 6.7):

регенерация акцептора CO2.

Рис. 6.7. Цикл Кальвина

На первой стадии к рибулозо-1,5-бисфосфату присоединяется CO2 под действием фермента рибулозобисфосфаткарбоксилазы.. Этот белок составляет основную фракцию белков хлоропласта и является наиболее распространённым ферментом в природе. В результате образуется промежуточное неустойчивое соединение (С6), распадающееся на две молекулы 3-фосфоглицериновой кислоты (ФГК), которая является первичным продуктом фотосинтеза.

Во второй стадии ФГК фосфорилируется и восстанавливается с образованием глицеральдегид-3-фосфата (ФГА).

В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 молекулы рибулозо-1,5-бисфосфата.

Две молекулы ФГА необходимы для синтеза глюкозы. Таким образом, для синтеза 1 молекулы глюкозы требуется 6 оборотов цикла, 6 CO2, 12 НАДФН∙Н + и 18 АТФ.

Интенсивность фотосинтеза зависит в первую очередь от интенсивности и спектрального состава света, концентрации СО2 и О2, температуры, водного режима растения, минерального питания и других факторов внешней среды.

Лекция № 12. Фотосинтез. Хемосинтез

Фотосинтез

Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:

Радикалы •ОН объединяются, образуя воду и свободный кислород:

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:

2Н + + 2е — + НАДФ → НАДФ·Н2.

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3– и С4-фотосинтез.

С3-фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

Фотодыхание

Фотодыхание:
1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).

С4-фотосинтез

С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.

Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.

Строение С4-растений:
1 — наружный слой — клетки мезофилла; 2 — внут­ренний слой — клетки обкладки; 3 — «Кранц-анатомия»; 4, 5 — хлоро­пласты; 4 — много­числен­ные граны, крахмала мало; 5 — немного­числен­ные граны, крахмала много.

С4-фотосинтез:
1 — клетка мезофилла; 2 — клетка обкладки проводящего пучка.

Значение фотосинтеза

Купить проверочные работы
и тесты по биологии

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом. К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH3 → HNO2 → HNO3).

Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+ ).

Серобактерии окисляют сероводород до серы или серной кислоты (H2S + ½O2 → S + H2O, H2S + 2O2 → H2SO4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков»

Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз»

Смотреть оглавление (лекции №1-25)

Фотосинтез

Фотосинтез — это преобразование энергии света в энергию химических связей органических соединений.

Фотосинтез характерен для растений, в том числе всех водорослей, ряда прокариот, в том числе цианобактерий, некоторых одноклеточных эукариот.

В большинстве случаев при фотосинтезе в качестве побочного продукта образуется кислород (O2). Однако это не всегда так, поскольку существует несколько разных путей фотосинтеза. В случае выделения кислорода его источником является вода, от которой на нужды фотосинтеза отщепляются атомы водорода.

Фотосинтез состоит из множества реакций, в которых участвуют различные пигменты, ферменты, коферменты и др. Основными пигментами являются хлорофиллы, кроме них — каротиноиды и фикобилины.

В природе распространены два пути фотосинтеза растений: C3 и С4. У других организмов есть своя специфика реакций. Все, что объединяет эти разные процессы под термином «фотосинтез», – во всех них в общей сложности происходит преобразование энергии фотонов в химическую связь. Для сравнения: при хемосинтезе происходит преобразование энергии химической связи одних соединений (неорганических) в другие — органические.

Выделяют две фазы фотосинтеза — световую и темновую. Первая зависит от светового излучения (hν), которое необходимо для протекания реакций. Темновая фаза является светонезависимой.

У растений фотосинтез протекает в хлоропластах. В результате всех реакций образуются первичные органические вещества, из которых потом синтезируются углеводы, аминокислоты, жирные кислоты и др. Обычно суммарную реакцию фотосинтеза пишут в отношении глюкозы — наиболее распространенного продукта фотосинтеза:

Атомы кислорода, входящие в молекулу O2, берутся не из углекислого газа, а из воды. Углекислый газ – источник углерода, что более важно. Благодаря его связыванию у растений появляется возможность синтеза органики.

Представленная выше химическая реакция есть обобщенная и суммарная. Она далека от сути процесса. Так глюкоза не образуется из шести отдельных молекул углекислоты. Связывание CO2 происходит по одной молекуле, которая сначала присоединяется к уже существующему пятиуглеродному сахару.

Для прокариот характерны свои особенности фотосинтеза. Так у бактерий главный пигмент — бактериохлорофилл, и не выделяется кислород, так как водород берется не из воды, а часто из сероводорода или других веществ. У сине-зеленых водорослей основным пигментом является хлорофилл, и при фотосинтезе выделяется кислород.

Световая фаза фотосинтеза

В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов, где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.

Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H2. Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.

Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.

На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.

Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.

Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.

Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды. Фотолиз также происходит при участии света и заключается в разложении H2O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.

Примерное суммарное уравнение световой фазы фотосинтеза:

H2O + НАДФ + 2АДФ + 2Ф → ½O2 + НАДФ · H2 + 2АТФ

Циклический транспорт электронов

Выше описана так называемый нецикличная световая фаза фотосинтеза. Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит. При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.

Фотофосфорилирование и окислительное фосфорилирование

Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания — окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе – солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием, а не окислительным фосфорилированием.

Темновая фаза фотосинтеза

Впервые темновую фазу фотосинтеза подробно изучили Кальвин, Бенсон, Бэссем. Открытый ими цикл реакций в последствии был назван циклом Кальвина, или C3-фотосинтезом. У определенных групп растений наблюдается видоизмененный путь фотосинтеза – C4, также называемый циклом Хэтча-Слэка.

В темновых реакциях фотосинтеза происходит фиксация CO2. Темновая фаза протекает в строме хлоропласта.

Восстановление CO2 происходит за счет энергии АТФ и восстановительной силы НАДФ·H2, образующихся в световых реакциях. Без них фиксации углерода не происходит. Поэтому хотя темновая фаза напрямую не зависит от света, но обычно также протекает на свету.

Цикл Кальвина

Первая реакция темновой фазы – присоединение CO2 (карбоксилирование) к 1,5-рибулезобифосфату (рибулезо-1,5-дифосфат) – РиБФ. Последний представляет собой дважды фосфорилированную рибозу. Данную реакцию катализирует фермент рибулезо-1,5-дифосфаткарбоксилаза, также называемый рубиско.

В результате карбоксилирования образуется неустойчивое шестиуглеродное соединение, которое в результате гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК) – первый продукт фотосинтеза. ФГК также называют фосфоглицератом.

ФГК содержит три атома углерода, один из которых входит в состав кислотной карбоксильной группы (-COOH):

Из ФГК образуется трехуглеродный сахар (глицеральдегидфосфат) триозофосфат (ТФ), включающий уже альдегидную группу (-CHO):

ФГК (3-кислота) → ТФ (3-сахар)

На данную реакцию затрачивается энергия АТФ и восстановительная сила НАДФ · H2. ТФ — первый углевод фотосинтеза.

После этого большая часть триозофосфата затрачивается на регенерацию рибулозобифосфата (РиБФ), который снова используется для связывания CO2. Регенерация включает в себя ряд идущих с затратой АТФ реакций, в которых участвуют сахарофосфаты с количеством атомов углерода от 3 до 7.

В таком круговороте РиБФ и заключается цикл Кальвина.

Из цикла Кальвина выходит меньшая часть образовавшегося в нем ТФ. В перерасчете на 6 связанных молекул углекислого газа выход составляет 2 молекулы триозофосфата. Суммарная реакция цикла с входными и выходными продуктами:

При этом в связывании участвую 6 молекул РиБФ и образуется 12 молекул ФГК, которые превращаются в 12 ТФ, из которых 10 молекул остаются в цикле и преобразуются в 6 молекул РиБФ. Поскольку ТФ — это трехуглеродный сахар, а РиБФ — пятиуглеродный, то в отношении атомов углерода имеем: 10 * 3 = 6 * 5. Количество атомов углерода, обеспечивающих цикл не изменяется, весь необходимый РиБФ регенерируется. А шесть вошедших в цикл молекул углекислоты затрачиваются на образование двух выходящих из цикла молекул триозофосфата.

На цикл Кальвина в расчете на 6 связанных молекул CO2 затрачивается 18 молекул АТФ и 12 молекул НАДФ · H2, которые были синтезированы в реакциях световой фазы фотосинтеза.

Расчет ведется на две выходящие из цикла молекулы триозофосфата, так как образующаяся в последствии молекула глюкозы, включает 6 атомов углерода.

Триозофосфат (ТФ) — конечный продукт цикла Кальвина, но его сложно назвать конечным продуктом фотосинтеза, так как он почти не накапливается, а, вступая в реакции с другими веществами, превращается в глюкозу, сахарозу, крахмал, жиры, жирные кислоты, аминокислоты. Кроме ТФ важную роль играет ФГК. Однако подобные реакции происходят не только у фотосинтезирующих организмов. В этом смысле темновая фаза фотосинтеза – это то же самое, что цикл Кальвина.

Из ФГК путем ступенчатого ферментативного катализа образуется шестиуглеродный сахар фруктозо-6-фосфат, который превращается в глюкозу. В растениях глюкоза может полимеризоваться в крахмал и целлюлозу. Синтез углеводов похож на процесс обратный гликолизу.

Фотодыхание

Кислород подавляет фотосинтез. Чем больше O2 в окружающей среде, тем менее эффективен процесс связывания CO2. Дело в том, что фермент рибулозобифосфат-карбоксилаза (рубиско) может реагировать не только с углекислым газом, но и кислородом. В этом случае темновые реакции несколько иные.

Содержащая пять атомов углерода молекула рибулозобифосфата реагирует уже не с CO2, а с O2. В результате чего образуются по одной молекуле фосфогликолата (C2) и фосфоглицериновой кислоты (C3), а не две ФГК как обычно.

Фосфогликолат — это фосфогликолевая кислота. От нее сразу отщепляется фосфатная группа, и она превращается в гликолевую кислоту (гликолат). Для его «утилизации» снова нужен кислород. Поэтому чем больше в атмосфере кислорода, тем больше он будет стимулировать фотодыхание и тем больше растению будет требоваться кислорода, чтобы избавиться от продуктов реакции.

Фотодыхание — это зависимое от света потребление кислорода и выделение углекислого газа. То есть обмен газов происходит как при дыхании, но протекает в хлоропластах и зависит от светового излучения. От света фотодыхание зависит лишь потому, что рибулозобифосфат образуется только при фотосинтезе.

При фотодыхании происходит возврат атомов углерода из гликолата в цикл Кальвина в виде фосфоглицериновой кислоты (фосфоглицерата).

2 Гликолат (С2) → 2 Глиоксилат (С2) →2 Глицин (C2) – CO2 → Серин (C3) →Гидроксипируват (C3) → Глицерат (C3) → ФГК (C3)

Как видно, возврат происходит не полный, так как один атом углерода теряется при превращении двух молекул глицина в одну молекулу аминокислоты серина, при этом выделяется углекислый газ.

Кислород необходим на стадиях превращения гликолата в глиоксилат и глицина в серин.

Превращения гликолата в глиоксилат, а затем в глицин происходят в пероксисомах, синтез серина в митохондриях. Серин снова поступает в пероксисомы, где из него сначала получается гидрооксипируват, а затем глицерат. Глицерат уже поступает в хлоропласты, где из него синтезируется ФГК.

Фотодыхание характерно в основном для растений с C3-типом фотосинтеза. Его можно считать вредным, так как энергия бесполезно тратится на превращения гликолата в ФГК. Видимо фотодыхание возникло из-за того, что древние растения были не готовы к большому количеству кислорода в атмосфере. Изначально их эволюция шла в атмосфере богатой углекислым газом, и именно он в основном захватывал реакционный центр фермента рубиско.

C4-фотосинтез, или цикл Хэтча-Слэка

Если при C3-фотосинтезе первым продуктом темновой фазы является фосфоглицериновая кислота, включающая три атома углерода, то при C4-пути первыми продуктами являются кислоты, содержащие четыре атома углерода: яблочная, щавелевоуксусная, аспарагиновая.

С4-фотосинтез наблюдается у многих тропических растений, например, сахарного тростника, кукурузы.

С4-растения эффективнее поглощают оксид углерода, у них почти не выражено фотодыхание.

Растения, в которых темновая фаза фотосинтеза протекает по C4-пути, имеют особое строение листа. В нем проводящие пучки окружены двойным слоем клеток. Внутренний слой — обкладка проводящего пучка. Наружный слой — клетки мезофилла. Хлоропласты клеток слоев отличаются друг от друга.

Для мезофильных хлоропласт характерны крупные граны, высокая активность фотосистем, отсутствие фермента РиБФ-карбоксилазы (рубиско) и крахмала. То есть хлоропласты этих клеток адаптированы преимущественно для световой фазы фотосинтеза.

В хлоропластах клеток проводящего пучка граны почти не развиты, зато высока концентрация РиБФ-карбоксилазы. Эти хлоропласты адаптированы для темновой фазы фотосинтеза.

Углекислый газ сначала попадает в клетки мезофилла, связывается с органическими кислотами, в таком виде транспортируется в клетки обкладки, освобождается и далее связывается также, как у C3-растений. То есть C4-путь дополняет, а не заменяет C3.

В мезофилле CO2 присоединяется к фосфоенолпирувату (ФЕП) с образованием оксалоацетата (кислота), включающего четыре атома углерода:

Реакция происходит при участии фермента ФЕП-карбоксилазы, обладающего более высоким сродством к CO2, чем рубиско. К тому же ФЕП-карбоксилаза не взаимодействует с кислородом, а значит не затрачивается на фотодыхание. Таким образом, преимущество C4-фотосинтеза заключается в более эффективной фиксации углекислоты, увеличению ее концентрации в клетках обкладки и следовательно более эффективной работе РиБФ-карбоксилазы, которая почти не расходуется на фотодыхание.

Оксалоацетат превращается в 4-х углеродную дикарбоновую кислоту (малат или аспартат), которая транспортируется в хлоропласты клеток обкладки проводящих пучков. Здесь кислота декарбоксилируется (отнятие CO2), окисляется (отнятие водорода) и превращается в пируват. Водород восстанавливает НАДФ. Пируват возвращается в мезофилл, где из него регенерируется ФЕП с затратой АТФ.

Оторванный CO2 в хлоропластах клеток обкладки уходит на обычный C3-путь темновой фазы фотосинтеза, т. е. в цикл Кальвина.

Фотосинтез по пути Хэтча-Слэка требует больше энергозатрат.

Считается, что C4-путь возник в эволюции позже C3 и во многом является приспособлением против фотодыхания.

Читайте также:  Комнатные растения с красивыми цветками
Ссылка на основную публикацию